
G-Store:
High Performance Graph Store for

Trillion-edge Processing

Pradeep Kumar and H. Howie Huang

The George Washington University

Introduction

 Graph is everywhere

 Applications include
• Social Networks

• Computer Networks

• Protein Structures

• Recommendation Systems

• And many more …

 Graph size is reaching to Trillion edges

2

Motivation

3

Trillion-edge graph

Lower capacity but Fast access

Higher capacity but Slow access

+=

Outline

4

01 - Observations

02 – G-Store
Architecture

03 - Experiment

04 – Conclusion and QA

Observation 1: Graph Size

 PageRank algorithm on Kron-28-16 graph
• 228 vertices

• 233 edges

 Graph sizes vary
• 128GB if using 16-byte for an edge-tuple

• 64GB for 8-byte edge-tuple

 Smaller graph size leads to better performance

5

0

0.5

1

1.5

2

2.5

16-Byte 8-Byte

S
p

e
e

d
u

p

Size of edge-tuple

Observation 2: Metadata Access Localization

 PageRank on 2-D partitioned graph

 In-memory processing performance

 Partition count affects metadata locality

6

0

0.5

1

1.5

S
p

e
e
d

u
p

Number of Partitions

(0,1)(0,3),
(1,0),(1,2),
(2,1),(3,0)

(0,4),(1,4),
(2,4)

(4,0),(4,1),
(4,2)

(4,5),(5,4),
(5,6),(5,7),
(6,5),(7,5)

2

3

1

54

0

7
6

Observation 3: Streaming Memory Size

 Small streaming memory does not significantly affect IO performance

 Use rest of the memory for caching to improve algorithm performance

7

0

0.2

0.4

0.6

0.8

1

1.2

8 16 32 64 128 256 368 512

S
p

e
e
d

u
p

Streaming memory size (in MB)

G-Store

8

Symmetry

01 Graph Size

SNB Format

Tile-based
Representation

Graph Algorithm

On-Disk Grouping
And Tile-based I/O

Storage Devices

Memory
Management

G-Store

Grouping

02 Metadata

On-Disk Layout

Proactive Caching

03 Memory

Slide-Cache-Rewind

Tile-based Representation

9

(a) Example graph

(b) Edge-list

4 0 2 4 1 4 0 0 21 3 51 4
0 1 1 1 2 2 3 4 40 0 44 5

7 56 5
5 65 7

2

3

1

54

0

7
6

(0,1),(0,3),(1,0),
(1,2),(2,1),(3,0)

(0,4),(1,4),(2,4)

partition[0,0] partition[0,1]

(4,0),(4,1),(4,2) (4,5),(5,4),(5,6),
(5,7),(6,5),(7,5)

partition[1,0] partition[1,1]

(e) Smallest Number of Bits (SNB) Format

(0, 1), (0, 3),
(1, 2)

(0, 4), (1, 4),
(2, 4)

Tile[0, 0] Tile[0, 1]

(4, 5), (5, 6),
(5, 7)

Tile[1, 1]

(0x00, 0x01), (0x00, 0x11),
(0x01, 0x10)

(0x00, 0x00), (0x01, 0x00),
(0x10, 0x00)

Tile[0x0, 0x0] Tile[0x0, 0x1]

(0x00, 0x01), (0x01, 0x10),
(0x01, 0x11)

Tile[0x1, 0x1]

(c) 2-D Partitioned Graph

(d) Symmetry advantage

Tile Advantages

 G-Store achieves upto 8x space saving
• 2x due to Symmetry

• Upto 4x due to Smallest Number of Bit representation (SNB)

 Processing can run directly on top of the SNB format with no need
for conversion
• Use a new relative pointer per tile for each algorithmic metadata

• Please refer to the paper for details

10

Small Algorithm Change Needed for Tile

11

Forward
Direction

Backward
Direction

Tile Properties

 Tile size of Twitter graph
• Power law distribution

 Tile metadata size
• All smaller than LLC

12

Algorithm Metadata Size

Page-Rank 256KB

Connected Components 256KB

BFS 64KB

Grouping and On-disk Layout

 Combine q*q tiles into a physical
group

 Layout of tiles in disk
• Reading tiles sequentially provides better

hit ratios on LLC

 Tile is a basic unit for Data Fetching,
Processing and Caching

 Use Linux AIO

13

0 q 2*q g = p/q
0

q

2*q

PageRank-value

Physical-group

g = p/q

Disk-layout of tiles in a physical group

Grouping and On-disk Layout: Advantage

14

0

100

200

300

LLC Operations LLC Misses

B
ill

io
n

s

32*32 64*64 128*128 256*256 512*512 1024*1024

0
0.5

1
1.5

2

32*32 64*64 128*128 256*256 512*512 1024*1024

Sp
e

e
d

u
p

Group Composition (Tiles Count)

 256*256 grouping has fewest LLC operations (loads, store) and misses

 Improves performance by 57%

Proactive Caching

 Divide memory into streaming and caching

 Rule 1: at the end of the processing of row[i]
• We know whether row[i] would be processed in the next iteration
• Hints can be used later

 Rule 2: if row[i] is not needed for next iteration
• Then we know that Tile[i,i] will not be needed
• We only have partial information about other individual tiles

15

(0, 1), (0, 3),
(1, 2)

(0, 4), (1, 4),
(2, 4)

Tile[0, 0] Tile[0, 1]

(4, 5), (5, 6),
(5, 7)

Tile[1, 1]

Row[0]

Row[1]

Slide-cache-rewind

16

Processing IO Free Memory

Cache pool Processing IO

Cache pool Processing IO Free Memory

T1

T3

Ti

IO Free MemoryT0

Slide

Slide-cache-rewind

17

Cache pool (useful data) IO(S1) Processing(S2)

Proactive Caching

Ti+1

Cache pool (useful data) Processing ProcessedTn

Cache pool (processing) Processing Unprocessed

Cache-pool IO(S1) Processing(S2)

(T+1)0

(T+1)1

Proactive Caching

Rewind

 Less IO due to reuse

 Provide hints for proactive caching policy

 Evict unwanted data from cache pool

Experimental Setup

 Dual Intel Xeon CPU E5-2683, 14 core each, hyper-threading
enabled = 56 threads

 8GB streaming and caching memory

 Cache
• 32KB data and instruction L1 cache

• 256KB L2 cache

• 16MB L3 cache

 LSI SAS9300-8i HBA, 8 Samsung EVO 850 512GB SSD

 Linux Software RAID0 with 64KB stripe size

18

Graph Datasets & Space Saving

Graph Name Type X-Stream
Size

FlashGraph
Size

G-Store
Size

Space Saving
Over X-
Stream

Space Saving
Over
FlashGraph

Kron31-256 Undirected 8TB 4TB 2TB 4x 2x

Kron-33-16 Undirected 4TB 2TB 512GB 8x 4x

Kron-30-16 Undirected 256GB 128GB 64GB 4x 2x

Kron-28-16 Undirected 64GB 32GB 16GB 4x 2x

Rmat-28-16 Undirected 64GB 32GB 16GB 4x 2x

Random-27-32 Undirected 64GB 32GB 16GB 4x 2x

Twitter (Un-)Directed 14.6GB 14.6GB 7.3GB 4x 2x

Friendster (Un-)Directed 19.26GB 19.26GB 9.63GB 4x 2x

Subdomain (Un-)Directed 15.22GB 15.22GB 7.6GB 4x 2x

19

Performance on Trillion-edge Graph

 Kron-31-256: 231 vertices with 240 edges

 Kron-33-16: 233 vertices with 238 edges

 One iteration of Pagerank:
• G-Store: 14 min in a single machine for a trillion-edge graph
• Ching et al*: 3 min using 200 machines for similar-sized graph

*Ching et al. One Trillion Edges: Graph Processing at Facebook-scale. Proceedings of the 41st
International Conference on Very Large Data Bases(VLDB15)

20

Graph BFS Page-rank WCC

Kron-31-256 2548.54 4214.54 1925.13

Kron-33-16 1509.13 1882.88 849.05

Performance Comparison
 Over X-Stream

• 17x(BFS), 21x (PageRank), 32x(CC/WCC) speedup for Kron-28-16

• Others are similar. See paper for details.

21

0
0.5

1
1.5

2
2.5

Sp
e

e
d

u
p

BFS Pagerank CC/WCC

FlashGraph G-Store

 Over FlashGraph
• 1.5x (CC/WCC), 2x (PageRank), 1.4x (BFS, undirected)
• Slightly poor for BFS on directed graph due to no space saving in smaller

graph

Scalability on SSDs

 RAID0: 64K stripe size

 Close to 4x speedup for 4-SSDs

 Upto 6x speedup for 8-SSDs
• PageRank becomes compute intensive at 8-SSD configuration

22

0

2

4

6

8

BFS Pagerank WCC

Sp
e

e
d

u
p

1 SSD 2 SSDs 4 SSDs 8 SSDs

Slide-Cache-Rewind

 Base Policy (No cache): 4GB segment size (two)

 Cache+Rewind Policy: 7.5GB cache, 256MB segments (two)

 60% (BFS), 35% (PageRank) and 35% (WCC)

23

0

0.5

1

1.5

2

BFS Pagerank WCC

Sp
e

e
d

u
p

Base Policy Cache+Rewind Policy

Cache Size

 For Kron-28-16 graph from 1GB to 8GB
• Average 30% speedup

 For Twitter graph from 1GB to 4GB
• Average 41% speedup

24

0

0.5

1

1.5

2

BFS Pagerank WCC BFS Pagerank WCC

Sp
e

e
d

u
p

Kron-28-16 Twitter

1GB 2GB 4GB 8GB

Conclusion

 SNB: Space efficient representation

 Grouping: Optimal utilization of hardware cache

 Slide: Complete overlapping of IO and compute

 Cache: Graph specific proactive caching policy

 Rewind: Using the last drop of memory

25

Thank You

 Email: pradeepk@gwu.edu and howie@gwu.edu

 Graph software repository
• https://github.com/iHeartGraph/

•G-Store: High-Performance Graph Store for Trillion-Edge
Processing (SC’16)

• Enterprise: Breadth-First Graph Traversal on GPUs (SC’15)

• iBFS: Concurrent Breadth-First Search on GPUs (SIGMOD’16)

26

mailto:pradeepk@gwu.edu
mailto:howie@gwu.edu
https://github.com/iHeartGraph/

