G-Store:
High Performance Graph Store for
Trillion-edge Processing

Pradeep Kumar and H. Howie Huang

The George Washington University

8
,‘.-.“‘-.', THE GEORGE
€L LSS &1 6 WASHINGTON
“'u’,'.;‘.‘ sotionagay e UNIVERSITY

WASHINGTON, DC

Introduction

" Graph is everywhere

= Applications include T %)
* Social Networks N, -
 Computer Networks
* Protein Structures
 Recommendation Systems
 And many more ...

= Graph size is reaching to Trillion edges

Motivation

t't

Trillion-edge graph

Lower capacity but Fast access

?

Higher capacity but S/low access

GW

Outline

01 - Observations

02 — G-Store
Architecture

03 - Experiment

04 — Conclusion and QA

2

Observation 1: Graph Size

= PageRank algorithm on Kron-28-16 graph

* 228 vertices 2.5
* 233 edges o 2
3 15
)
. o 1
" Graph sizes vary Q g
» 128GB if using 16-byte for an edge-tuple W 0

* 64GB for 8-byte edge-tuple

= Smaller graph size leads to better performance

16-Byte 8-Byte
Size of edge-tuple

GW

Observation 2: Metadata Access Localization

= PageRank on 2-D partitioned graph 00—
. > &
" [n-memory processing performance ®
1.5
o
=
o 1
D
2 0.5
)
0
~‘° AV e P o] o>
é v § e ¥V) *Q
K > © N4 7 % \9'1?‘\/

Number of Partitions

= Partition count affects metadata locality

6

(0,1)(0,3), |(0,4),(1,4),

(1,0),(1,2), |(2,4)

(2,1),(3,0)

(4,0),(4,1), |(4,5),(54),

(4,2) (5,6),(5,7),
(6,5),(7,5)

GW

Observation 3: Streaming Memory Size

= Small streaming memory does not significantly affect 10 performance
1.2

1
0.8
0.6
0.4
0.2

0

128 256 368 512
Streammg memory size (in MB)

Speedup

= Use rest of the memory for caching to improve algorithm performance

7 GW

G-Store

01 Graph Size 02 Metadata 03 Memory

Graph Algorithm

G- Store

Storage Devices

Tile-based Representation

N
O OD—D o1oToTI(I1I12 1213 TaTaTaTaTs 51516 T7] | (0.1).(0.3),(1,0), | |(04),(1,4),(2,4)
1(3lalol2lal1lalolol1]2]|5]4l6e]7]5]5] |(1,2),(2,1),(3,0)
3 & (b) Edge-list partition[0,0] partition[0,1]
® (4,0),(4,1),(4,2) | |(4,5),(54),(5,6),
(5,7),(6,5),(7,5)
(a) Example graph partition[1,0] partition[1,1]
(c) 2-D Partitioned Graph
(0, 1), (O, 3), (0, 4), (1, 4), (0Ox00, 0x01), (0x00, Ox11), (0x00, 0x00), (0x01, 0x00),
(1, 2) (2, 4) (Ox01, 0x10) (Ox10, 0x00)
Tile[O, 0] Tile[O, 1] Tile[Ox0, 0x0] Tile[0x0, Ox1]
(4, 5), (5, 6), (0x00, 0x01), (0x01, 0x10),
(5, 7) (0x01, Ox11)
Tile[1, 1] Tile[Ox1, Ox1]

(d) Symmetry advantage

(e) Smallest Number of Bits (SNB) Format

GW

Tile Advantages

= G-Store achieves upto 8x space saving

e 2x due to Symmetry
e Upto 4x due to Smallest Number of Bit representation (SNB)

" Processing can run directly on top of the SNB format with no need

for conversion
* Use a new relative pointer per tile for each algorithmic metadata

* Please refer to the paper for details

10

GW

Small Algorithm Change Needed for Tile

Algorithm 1 BFS on the partition[i.j] of undirected graph

I: edge + get_edge_ptr(i,j);
2: for k + 1, edge_count(i,j) do
3: sre + edgelk].sre;
4: dst + edgelk].dst:
Forward | 3: if depth|src] == level & depth|dst]| == INF then
b
7

Direction depth|dst] < level 4 1;
end if

8 ___/[Added code_for new storage format____________.
Backward ' 9: if depth|dst] == level & depth|src] == INF then'
Direction :10: depth|src] + level + 1; |

1 end if |

2 endfor T T T TTTTTTTTTTTTTTTTTTTTTTTTTTTToS

11

GW

Tile Properties

= Tile size of Twitter graph
* Power law distribution

= Tile metadata size
e All smaller than LLC

T
X 2FUR

=
R R

Edge Count (log scale)
2 =

=
x

1 10* 3
1 103&
: N
1 10%5
e 101

10° "

1 1 1
4.0x10° 5.0x10° 6.0x10° 7.0x10°

L
8.0x10°
Tiles ID

1 1 4
9.0x10° 1.0x10° 11x20°

Page-Rank 256KB

Connected Components 256KB

BFS 64KB
12

GW

Grouping and On-disk Layout

= Combine g*q tiles into a physical

rou
5 P PageRank-value
'\ k\
Q q 2%q g=p/q
= Layout of tiles in disk , °
* Reading tiles sequentially provides better H—*—*—-q |
hit ratios on LLC <« Physical-group
/Yﬂ s 7*q
= Tile is a basic unit for Data Fetching, o
Processing and Caching
EEE‘TE‘EVEEEE"EEE"'*"'E

Disk-layout of tiles in a physical group

= Use Linux AIO

13

GW

Grouping and On-disk Layout: Advantage

m32*%32 m64*64 m128*128 mW256*256 mW512*512 = 1024*1024

LLC Operations LLC Misses

Billions

= N (98]

o O O
o O O O

= 256%*256 grouping has fewest LLC operations (loads, store) and misses

32*%32 64*64 128*%128 256*256 512*512 1024*1024
Group Composition (Tiles Count)

Speedup
=Y

o
ok uIN

" |mproves performance by 57%
14

GW

Proactive Caching

= Divide memory into streaming and caching

= Rule 1: at the end of the processing of row[i]
* We know whether row/i] would be processed in the next iteration
* Hints can be used later

(0, 1), (0, 3), 0.4 (La), |+ Rowl0]
(1,2) (2, 4)
Tile[O, 0] Tile[0, 1]
(4’ 5)’ (5’ 6), At ROW[l]
(5,7)
Tile[1, 1]

= Rule 2:if row/i] is not needed for next iteration
 Then we know that Tile[i,i] will not be needed

* We only have partial information about other individual tiles

15

GW

Slide-cache-rewind

Slide

T, Free Memory

o

Biiids i

IRl Processing 10 Free Memory

IREII TR '
T; | Cache pool REgelel=SyF: 10 Free Memory

AREREE

T, Cache pool Processing

16

: §

10

GW

Slide-cache-rewind

P IREEEE

10(S1) Processing(S2)
Proactive Caching =

T, | Cache pool (useful data) Processing | Processed

Tiv1 | Cache pool (useful data)

ARREEE
(T+1)0 Cache pool (processing) Processing Unprocessed
: 2REEEE
(T+1), Cache-pool 10(S1) Processing(S2)

A

Proactive Caching
= | ess |O due to reuse

= Provide hints for proactive caching policy

= Evict unwanted data from cache pool
17

GW

Experimental Setup

Dual Intel Xeon CPU E5-2683, 14 core each, hyper-threading
enabled = 56 threads

8GB streaming and caching memory

Cache
e 32KB data and instruction L1 cache

e 256KB L2 cache
e 16MB L3 cache

LSI SAS9300-8i HBA, 8 Samsung EVO 850 512GB SSD
Linux Software RAIDO with 64KB stripe size

18

GW

Graph Datasets & Space Saving

Graph Name Type

X-Stream | FlashGraph Space Saving | Space Saving

Size Size Over X- Over
Stream FlashGraph
Kron31-256 Undirected 8TB 4TB 2TB 4x 2X
Kron-33-16 Undirected 4TB 2TB 512GB 8x 4x
Kron-30-16 Undirected 256GB 128GB 64GB 4x 2X
Kron-28-16 Undirected 64GB 32GB 16GB 4x 2X
Rmat-28-16 Undirected 64GB 32GB 16GB 4x 2X
Random-27-32 Undirected 64GB 32GB 16GB 4x 2X
Twitter (Un-)Directed 14.6GB 14.6GB 7.3GB 4x 2X
Friendster (Un-)Directed 19.26GB 19.26GB 9.63GB 4x 2X
Subdomain (Un-)Directed 15.22GB 15.22GB 7.6GB 4x 2X
19

GW

Performance on Trillion-edge Graph

Kron-31-256: 231 vertices with 240 edges

Kron-33-16: 233 vertices with 238 edges

Kron-31-256 2548.54 4214.54 1925.13
Kron-33-16 1509.13 1882.88 849.05

= One iteration of Pagerank:
e G-Store: 14 min in a single machine for a trillion-edge graph
* Ching et al*: 3 min using 200 machines for similar-sized graph

*Ching et al. One Trillion Edges: Graph Processing at Facebook-scale. Proceedings of the 41st
International Conference on Very Large Data Bases(VLDB15)

20

GW

Performance Comparison

= QOver X-Stream
» 17x(BFS), 21x (PageRank), 32x(CC/WCC) speedup for Kron-28-16

e Others are similar. See paper for details.

" Over FlashGraph
* 1.5x (CC/WCC), 2x (PageRank), 1.4x (BFS, undirected)
* Slightly poor for BFS on directed graph due to no space saving in smaller

graph
2.5
M FlashGraph B G-Store
o 2
-
— 1.5
8 1
a°-5|||||I||I|||| ||| |||||||||
Vg 0
& 5> & « « & AP o & & &
woa .éé aéé-'o né'é“’b '»'»:».éc, »é:,@
S bo‘(\ @é ’\“‘3\ -\e?b 6°<° N -\e}‘b b°<° < -\z‘\b boé\ & 60‘0 @é < -\e?b 6°<° &é\ -\e‘\b 6°6\
NP <& P & & & gF NP & ¥ & 8
BFS Pagerank CC/WcCC

21 GW

Scalability on SSDs

= RAIDO: 64K stripe size
" Close to 4x speedup for 4-SSDs
= Upto 6x speedup for 8-SSDs

* PageRank becomes compute intensive at 8-SSD configuration

W1SSD mW2SSDs m4SSDs W 8SSDs

. -l ul -l

Pagerank

Speedup
S

22

GW

Slide-Cache-Rewind

= Base Policy (No cache): 4GB segment size (two)
= Cache+Rewind Policy: 7.5GB cache, 256MB segments (two)
= 60% (BFS), 35% (PageRank) and 35% (WCC)

M Base Policy B Cache+Rewind Policy
=
S 1.5
)
v
Q.
Pagerank

23

GW

Cache Size

" For Kron-28-16 graph from 1GB to 8GB
* Average 30% speedup

= For Twitter graph from 1GB to 4GB
* Average 41% speedup

Hm1GB ®E2GB ®w4GB m®8GB

2
Q.
_g 1.5
O 1
v
7))
0
Pagerank WCC Pagerank WCC
Kron-28-16 Twitter

24

Conclusion

SNB: Space efficient representation

Grouping: Optimal utilization of hardware cache

Slide: Complete overlapping of IO and compute

Cache: Graph specific proactive caching policy

Rewind: Using the last drop of memory

25

GW

Thank You

" Email: pradeepk@gwu.edu and howie@gwu.edu

= Graph software repository
* https://github.com/iHeartGraph/

* G-Store: High-Performance Graph Store for Trillion-Edge
Processing (SC’16)

* Enterprise: Breadth-First Graph Traversal on GPUs (SC’15)
* iBFS: Concurrent Breadth-First Search on GPUs (SIGMOD’16)

26

GW

mailto:pradeepk@gwu.edu
mailto:howie@gwu.edu
https://github.com/iHeartGraph/

