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Introduction

 Graph is everywhere

 Applications include
• Social Networks

• Computer Networks

• Protein Structures

• Recommendation Systems

• And many more …

 Graph size is reaching to Trillion edges
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Motivation
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Trillion-edge graph

Lower capacity but Fast access

Higher capacity but Slow access
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Outline 
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Observation 1: Graph Size

 PageRank algorithm on Kron-28-16 graph
• 228 vertices

• 233 edges

 Graph sizes vary
• 128GB if using 16-byte for an edge-tuple

• 64GB for 8-byte edge-tuple

 Smaller graph size leads to better performance
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Observation 2: Metadata Access Localization

 PageRank on 2-D partitioned graph

 In-memory processing performance

 Partition count affects metadata locality 
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Observation 3: Streaming Memory Size

 Small streaming memory does not significantly affect IO performance

 Use rest of the memory for caching to improve algorithm performance
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G-Store
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Tile-based Representation
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(a) Example graph

(b) Edge-list
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Tile Advantages

 G-Store achieves upto 8x space saving
• 2x due to Symmetry

• Upto 4x due to Smallest Number of Bit representation (SNB)

 Processing can run directly on top of the SNB format with no need 
for conversion
• Use a new relative pointer per tile for each algorithmic metadata

• Please refer to the paper for details
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Small Algorithm Change Needed for Tile
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Tile Properties

 Tile size of Twitter graph
• Power law distribution

 Tile metadata size
• All smaller than LLC
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Algorithm Metadata Size

Page-Rank 256KB

Connected Components 256KB

BFS 64KB



Grouping and On-disk Layout

 Combine q*q tiles into a physical 
group

 Layout of tiles in disk
• Reading tiles sequentially provides better 

hit ratios on LLC

 Tile is a basic unit for Data Fetching, 
Processing and Caching

 Use Linux AIO
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Grouping and On-disk Layout: Advantage
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Proactive Caching

 Divide memory into streaming and caching

 Rule 1: at the end of the processing of row[i] 
• We know whether row[i] would be processed in the next iteration
• Hints can be used later

 Rule 2: if row[i] is not needed for next iteration 
• Then we know that Tile[i,i] will not be needed
• We only have partial information about other individual tiles
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Slide-cache-rewind
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Slide-cache-rewind
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Cache pool (useful data ) IO(S1) Processing(S2)

Proactive Caching

Ti+1
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Rewind

 Less IO due to reuse

 Provide hints for proactive caching policy

 Evict unwanted data from cache pool



Experimental Setup

 Dual Intel Xeon CPU E5-2683, 14 core each, hyper-threading 
enabled = 56 threads

 8GB streaming and caching memory

 Cache
• 32KB data and instruction L1 cache

• 256KB L2 cache

• 16MB L3 cache

 LSI SAS9300-8i HBA, 8 Samsung EVO 850 512GB SSD

 Linux Software RAID0 with 64KB stripe size
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Graph Datasets & Space Saving

Graph Name Type X-Stream
Size

FlashGraph
Size

G-Store 
Size

Space Saving 
Over X-
Stream

Space Saving 
Over 
FlashGraph

Kron31-256 Undirected 8TB 4TB 2TB 4x 2x

Kron-33-16 Undirected 4TB 2TB 512GB 8x 4x

Kron-30-16 Undirected 256GB 128GB 64GB 4x 2x

Kron-28-16 Undirected 64GB 32GB 16GB 4x 2x

Rmat-28-16 Undirected 64GB 32GB 16GB 4x 2x

Random-27-32 Undirected 64GB 32GB 16GB 4x 2x

Twitter (Un-)Directed 14.6GB 14.6GB 7.3GB 4x 2x

Friendster (Un-)Directed 19.26GB 19.26GB 9.63GB 4x 2x

Subdomain (Un-)Directed 15.22GB 15.22GB 7.6GB 4x 2x
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Performance on Trillion-edge Graph

 Kron-31-256: 231 vertices with 240 edges

 Kron-33-16: 233 vertices with 238 edges

 One iteration of Pagerank:
• G-Store: 14 min in a single machine for a trillion-edge graph
• Ching et al*: 3 min using 200 machines for similar-sized graph

*Ching et al. One Trillion Edges: Graph Processing at Facebook-scale. Proceedings of the 41st 
International Conference on Very Large Data Bases(VLDB15)
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Graph BFS Page-rank WCC

Kron-31-256 2548.54 4214.54 1925.13

Kron-33-16 1509.13 1882.88 849.05



Performance Comparison
 Over X-Stream

• 17x(BFS), 21x (PageRank), 32x(CC/WCC) speedup for Kron-28-16

• Others are similar. See paper for details.
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 Over FlashGraph
• 1.5x (CC/WCC), 2x (PageRank), 1.4x (BFS, undirected) 
• Slightly poor for BFS on directed graph due to no space saving in smaller 
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Scalability on SSDs

 RAID0: 64K stripe size

 Close to 4x speedup for 4-SSDs

 Upto 6x speedup for 8-SSDs
• PageRank becomes compute intensive at 8-SSD configuration
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Slide-Cache-Rewind

 Base Policy (No cache): 4GB segment size (two)

 Cache+Rewind Policy: 7.5GB cache, 256MB segments (two) 

 60% (BFS), 35% (PageRank) and 35% (WCC) 

23

0

0.5

1

1.5

2

BFS Pagerank WCC

Sp
e

e
d

u
p

Base Policy Cache+Rewind Policy



Cache Size

 For Kron-28-16 graph from 1GB to 8GB 
• Average 30% speedup 

 For Twitter graph from 1GB to 4GB
• Average 41% speedup
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Conclusion

 SNB: Space efficient representation

 Grouping: Optimal utilization of hardware cache

 Slide: Complete overlapping of IO and compute

 Cache: Graph specific proactive caching policy

 Rewind: Using the last drop of memory
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Thank You

 Email: pradeepk@gwu.edu and howie@gwu.edu

 Graph software repository
• https://github.com/iHeartGraph/

•G-Store: High-Performance Graph Store for Trillion-Edge 
Processing (SC’16) 

• Enterprise: Breadth-First Graph Traversal on GPUs (SC’15)

• iBFS: Concurrent Breadth-First Search on GPUs (SIGMOD’16) 
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