
SafeNVM: A Non-volatile Memory
Store with Thread-Level Page

Protection
Pradeep Kumar, H Howie Huang

The George Washington University

New Members in the Persistent Media

 NVMs well suited for big data

 Can ingest high volume of data at very high velocity

 Others (HPC burst buffer, POSIX file system) likely to benefit
2* Keeton, K. “Memory Driven Computing”. FAST’17 Keynote.

Non Volatile Memory (NVM)

3

 A load-store device like DRAM
 Envisioned to be used as storage media
 Lower energy requirement than DRAM
 Standardizing initiatives: Zen-Z

 Persistent

 Byte addressable

 Comparable to DRAM latency

 Denser than DRAM

*Haris Volos, et al. "Aerie: Flexible File-System Interfaces to Storage-Class Memory,"
Proc. EuroSys 2014

Persistent Data at Risk

4

buf

p

Heap
(DRAM)

Stack
(DRAM)

Heap
(NVM)

1

3

2

int foo(char** argv) {
char buf[8]; //Buffer
char *p = malloc(sizeof(int));
strcpy(buf,argv[1]);
*p = magic_num;
return 0;

}

1

2

3

Memory
Controller

DRAM NVM

 Same address space

Memory corruption are common

 Persistent data in NVM at risk

Related Work
Proposal Name Description Issues
Linux mprotect NVM pages change from read-only

to read-write
High overhead due to TLB-Shootdown

PMFS[Eurosys’14] NVM pages change from read-only
to read-write momentarily using
CR0.WP

1.Interrupt and context switching are disabled
2.Kernel-mapped only

PMBD[MSST’14] NVM pages mapped privately
during each read-write

1.Interrupt and context switching are disabled
2.Kernel-mapped only
3.Write-window for many threads

Mnemosyne[ASPLOS’11] User space data store Data safety is not covered

NV-Heaps[ASPLOS’11] User space data store Only a subset are coverted

Write Integrity Testing
[IEEE S&P’08]

Allowing pointer modification to
points-to-set

1. Memory/CPU overhead
2. No Safety against escaped dangling pointer

SafeNVM
(Proposed)

A Thread momentarily gets write-
permission to needed NVM pages

None

5

Outline

6

01 – Overview and Problem Statement

02 – Background

03 – SafeNVM Architecture

04 – Evaluation

Disk Based Systems and Data Safety

Block Interfaces Vs load-store interface
 Logical block address (LBA) for block devices
 Virtual address space for memory devices

7

File system inode as bounds checker
 File offset to LBA conversion = bounds

checking

Persistent Pointers and Deswizzling
 Virtual pointers are tied to application’s address

space

 Sharing or loading at new address is tough

 A mapping is required to use persistent pointers

 Swizzling
Virtual address to Persistent pointer

Deswizzling
Persistent pointer to Virtual address

Deswizzling implies a bound checker

8

Extent
index

Absolute address
in the extent

0N-163

Persistent Pointer Layout

Outline

9

01 – Overview and Problem Statement

02 – Background

03 – SafeNVM Architecture

04 – Evaluation

SafeNVM Architecture
Data Reliability Model

 Thread Level Page Protection

Application Specific Object
Store Design

10

Thread-specific
& Dynamic
Page-Access
Permission

NVM Lib

OS VMM

mmap
Call

User Space
Kernel Space

NVM

Application

DRAM

Load Store
interface
(unsafe)

Load Store interface
(safe)

Data Safety Model of SafeNVM
 Equivalent to block devices

 Specialized interfaces
 Block interface in block devices
 Special instruction in SafeNVM

 Bound Checking
 File System inode for block devices
 Deswizzling of persistent pointers in SafeNVM

11

DRAM NVM

Write Stray
Write

Stray
Write

Stray
Write

Write

Thread-specific & Dynamic Page-
access Permission

Deswizzling/Bound
Checking

Application

Volatile Data Persistent Data

Write

Thread Level Page Protection

12

NX Protection Key … PPN … U/S R/W P

Read-only 0

Read-write 1

…
.

Read-only 2k – 1

63 62 63 - k 48 12 2 1 0

Page Table Entry

k

Permission-Level Buffer(PLB)

PL R/W Access
Rights

R R read-only

W R Read-write

Instruction
Name

PL
bit Action Comment

set_write_access (Protection Key) 0=>1
Executing thread
only gets NVM
write-access

Permission stays
during context
switch

clear_write_access (Protection Key) 1=>0
Executing thread
releases NVM
Write-access

Read-access
remains with all
the threads

• New Page-table and Permission-level Buffer
• TLB is changed similarly
• 6 bit Protection key => 64 protection domains
• New Hardware instruction for page access change

Page-access right calculationProposed X86_64 Instruction

1< k <1 4

Application Specific Object Store

13

my_list value1*

my_hash value2*

my_tree value3*

Header*

Extent_addrs*

Header: Root Node*
Free Node*
No. of Extents
Extent Size

Root Node: Data
Next*

…

Free Node: Size
Next*

vExtent_addrs[0]

vExtent_addrs[1]

Extent 0

Extent 1

Kernel Per-object
metadata

Object_name

Header*

vExtent_addrs*

Extent_addrs[0]

Extent_addrs[1]

Kernel address space
User address space

All pointers inside extent are persistent pointers

Super Table

Userspace Per-object
metadata

Key Value

APIs of SafeNVM
 Provides memory management

 Easy to change an application to use NVM.

14

Library API
status create_object (incore_pobj*, objname, flag)
status delete_object (incore_pobj*, objname)
status load_object (incore_pobj*, objname, flag)
void* decode_ptr (incore_pobj*, splptr t)
splptr t encode_ptr (incore_pobj*, void*, extent index)
splptr t alloc (incore_obj*, size, void**)
void free (incore_pobj*, splptr t)

System Call
status sys_create_object (incore pobj*, objname, flag)
status sys_delete_object (incore pobj*, objname, flag)
status sys_load_object (incore pobj*, objname, flag)
status sys_alloc_extent (incore pobj*, objname)
status sys_free_extent (incore pobj*, objname)

Outline

15

01 – Overview and Problem Statement

02 – Background

03 – SafeNVM Architecture

04 – Evaluation

Evaluations
Hardware changes in QEMU

1 bit protection key in Page Table, TLB
1 unused bit of EFLAGS as protection level buffer, part of context switch
2 new hardware instruction

 Linux Kernel changes
mmap system call to pass protection key
Page table changes

16

Evaluations

 131,072 nodes of size 128 bytes

 3.6% better then RAMFS for creation

 24.5% performance degradation for traversal discarding deserialization cost

17

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Ru
n

Ti
m

e
(N

or
m

al
iz

ed
)

Creation Traversal
Linked-list operations

Case Number Issues Effect on
NVM

CVE-2010-2160 Buffer
Overflow

Data
Corruption

CVE-2007-1211 Dangling
Pointer

Data
Corruption

CVE-2007-4000 Uninitialized
Pointer

Data
Corruption

CVE-2008-5187 Pointer
Arithmetic

Data
Corruption

Persistent Pointer Overhead

 48% and 73% better than RAMFS.

 Ignoring serialization/deserialization cost
7.4% and 3.4% worst than DRAM based linked-list.

18

RAMFS SafeNVM
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ti
m

e
(In

 S
ec

on
d)

(a) Linked-list Creation

Serialization Creation

RAMFS SafeNVM
0

0.1
0.2
0.3
0.4
0.5
0.6

Ti
m

e
(In

 S
ec

on
d)

(b) Linked-list Traversal

Deserialization Traversing

*No QEMU changes involved. Measuring the overhead on Persistent Pointer.

Persistent Pointer Overhead

 Redis LPUSH operation: Creating the list of 10 million nodes

 Redis LRANGE operation: Traversing and getting specified number
of nodes (e.g. 100 in LRANGE 100) from the list.

 Performance difference is less than 1%

19

0

40

80

120

160

200

DRAM SafeNVM

Ti
m

e
(in

 S
ec

on
d)

(a) Redis LPUSH Operation

0

10000

20000

30000

40000

LRANGE_100 LRANGE_300 LRANGE_500 LRANGE_600

Th
ro

ug
hp

ut
(O

pe
ra

tio
ns

/s
ec

)

(b) Redis LRANGE Operation

DRAM SafeNVM

Conclusion
Data Safety is an important problem for NVM

 SafeNVM provides required data reliability
equivalent of disk-based system

20

