SafeNVM: A Non-volatile Memory
Store with Thread-Level Page
Protection

Pradeep Kumar, H Howie Huang

The George Washington University

THE GEORGE
WASHINGTON
UNIVERSITY

WASHINGTON, DC

New Members in the Persistent Media

LATENCY

Two new

entries!
1-10ns SRAM + Massive b/w
(caches)
HBM
DRAM

50ns

DDR

50-100ns Storage class memory
100-500ns| 0

MBs 10-100GBs 1TBs 1-10TBs 10-100TBs

» NVMs well suited for big data

» Can ingest high volume of data at very high velocity
» Others (HPC burst buffer, POSIX file system) likely to benefit

* Keeton, K. “Memory Driven Computing”. FAST’17 Keynote. 2 GW

Non Volatile Memory (NVM)

Flash-backed DRAM Phase-Change Memory

! Latency

I ; =
HS

<

Spin Torque MRAM Resistive RAM Flash
> Persistent > A load-store device like DRAM
» Byte addressable > Envisioned to be used as storage media
» Comparable to DRAM latency > Lower energy requirement than DRAM
» Denser than DRAM > Standardizing initiatives:

*Haris Volos, et al. "Aerie: Flexible File-System Interfaces to Storage-Class Memory," W
Proc. EuroSys 2014 3 G

Persistent Data at Risk

Memory

Controller

DRAM NVM

» Same address space
» Memory corruption are common

» Persistent data in NVM at risk

int foo(char** argv) {
char buf[8]; //Buffer
€D char *p = malloc(sizeof{(int));
@) strepy(buf,argv[1]);
@ *p = magic_num;

return O;
}
buf
o/
e(/L
o I A —— ————
&
Stack Heap Heap
(DRAM) (DRAM) (NVM)

GW

Related Work

Proposal Name

Description

Issues

Linux mprotect

NVM pages change from read-only
to read-write

High overhead due to TLB-Shootdown

PMFS[Eurosys’14] NVM pages change from read-only | 1.Interrupt and context switching are disabled
to read-write momentarily using 2.Kernel-mapped only
CRO.WP
PMBD[MSST’14] NVM pages mapped privately 1.Interrupt and context switching are disabled
during each read-write 2.Kernel-mapped only
3.Write-window for many threads
Mnemosyne[ASPLOS’11] | User space data store Data safety is not covered

NV-Heaps[ASPLOS’11]

User space data store

Only a subset are coverted

Write Integrity Testing
[IEEE S&P’08]

Allowing pointer modification to
points-to-set

1. Memory/CPU overhead
2. No Safety against escaped dangling pointer

GW

Outline

01 — Overview and Problem Statement \/

02 — Background

03 — SafeN'VM Architecture

04 — Evaluation

Disk Based Systems and Data Safety

Block 0
(Upper Surface)

Block 8
(Lower Surface)

Block 16

Block 32

Block 48

Address
array

Inode

J | Indirect >

0
11

12

13

p— Double . | Slorage
—~ indirect Il‘;}?‘;r;‘ct | blocks
— block o

14

-

Block Interfaces Vs load-store interface
= Logical block address (LBA) for block devices

= Virtual address space for memory devices

| block -

| Indirect
block |
hl_"'

File system inode as bounds checker

= File offset to LBA conversion = bounds
checking

GW

Persistent Pointers and Deswizzling

» Virtual pointers are tied to application’s address
Extent | Absolute address
Space index | inthe extent

> Sharing or loading at new address is tough BN

. . .) . Persistent Pointer Layout
> A Mapping IS requwed to use per5|stent pomters

» Swizzling

= VVirtual address to Persistent pointer

» Deswizzling
= Persistent pointer to Virtual address

» Deswizzling implies a bound checker

Outline

01 — Overview and Problem Statement Q/

02 — Background Q/

03 — SafeN'VM Architecture

04 — Evaluation

SafeN'VM Architecture

» Data Reliability Model

Load Store interface
. (safe) licati

> Thread Level Page Protection % NPT losd store

o interface
ﬁ (unsafe)
Thread-specific
1 1 1Fi 1 & Dynamic .
> Appllcathn Specific Object N | e NVM Lib DRAM
Store Design Permission TT
mmap User Space
lLCaII Kernel Space
A4
< > 0S VMM <:>

10 GW

Data Safety Model of SafeNVM

» Equivalent to block devices

» Specialized interfaces
= Block interface in block devices
= Special instruction in SafeNVM

» Bound Checking

= File System inode for block devices

= Deswizzling of persistent pointers in SafeNVM

11

Application

Volatile Data

Persistent Data

Write Stray
Write

Write .

Thread-specific & Dynamic Page-
access Permission

P

Stray
Write

Stray
Write

Deswizzling/Bound

Checking
| I

DRAM

NVM

GW

Thread Level Page Protection

* New Page-table and Permission-level Buffer
* TLBis changed similarly
* 6 bit Protection key => 64 protection domains

 New Hardware instruction for page access change

63 62 63 -k 48 12 2 1 0
NX | Protection Key PPN |.. |U/S|R/W |P
Page Table Entry Read-only |0
//k Read-write |1
1<k<14
Read-only | 2k-1

Instructi .
'on P!' Action Comment
Name bit
Executing thread | Permission stays
set_write_access (Protection Key) 0=>1 | only gets NVM during context
write-access switch
Executing thread | Read-access
clear_write_access (Protection Key) | 1=>0 | releases NVM remains with all

Write-access

the threads

Proposed X86_64 Instruction

Permission-Level Buffer(PLB)

PL | R/W Access
Rights

R R read-only

W R Read-write

Page-access right calculation

GW

Application Specific Object Store

Object_name

Header*

vExtent_addrs*

//

h 4

Userspace Per-object

vExtent_addrs[0]

vExtent_addrs[1]

hd

Extent_addrs[0]

Extent_addrs[1]

//////*

metadata
_Useraddressspace | ____
Kernel address space

Key Value
my_list valuel* ¥ Header*
my_hash | value2* Extent_addrs*
%

my_tree | value3 Kernel Per-object

Super Table metadata

Extent O

.

Header: Root Node*
Free Node*
No. of Extents
Extent Size

Root Node: Data
Next*

Free Node: Size

Next*

l Extent 1

All pointers inside extent are persistent pointers

13

GW

APIs of SafeNVM

» Provides memory management

» Easy to change an application to use NVM.

Library API

status create_object (incore_pobj*, objname, flag)
status delete_object (incore_pobj*, objname)

status load_object (incore_pobj*, objname, flag)
void* decode_ptr (incore_pobj*, splptrt)

splptr t encode_ptr (incore_pobj*, void*, extent index)
splptrt alloc (incore_obj*, size, void**)

void free (incore_pobj*, splptr t)

System Call

status sys_create_object (incore pobj*, objname, flag)
status sys_delete_object (incore pobj*, objname, flag)
status sys_load_object (incore pobj*, objname, flag)
status sys_alloc_extent (incore pobj*, objname)
status sys_free_extent (incore pobj*, objname)

14

Outline

01 — Overview and Problem Statement \/

02 — Background Q/

03 — SafeNVM Architecture Q/

04 — Evaluation

15 GW

Evaluations

» Hardware changes in QEMU
= 1 bit protection key in Page Table, TLB
= 1 unused bit of EFLAGS as protection level buffer, part of context switch
= 2 new hardware instruction

» Linux Kernel changes
" mmap system call to pass protection key
= Page table changes

16

GW

Evaluations

Case Number | Issues Effect on 1.4
NVM 12
CVE-2010-2160 | Buffer Data @ § 0;
Overflow Corruption E = 06
CVE-2007-1211 | Dangling Data cE M
Pointer Corruption < 3 0
CVE-2007-4000 | Uninitialized | Data - Creation Traversal
Pointer Corruption Linked-list operations
CVE-2008-5187 | Pointer Data
Arithmetic Corruption

» 131,072 nodes of size 128 bytes
> 3.6% better then RAMFS for creation

» 24.5% performance degradation for traversal discarding deserialization cost

17 GW

Persistent Pointer Overhead

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Time (In Second)

M Serialization Creation
RAMFS SafeNVM

(a) Linked-list Creation

0.6 M Deserialization Traversing

0.5
04
0.3
0.2
0.1

Time (In Second)

RAMFS SafeNVM
(b) Linked-list Traversal

> 48% and 73% better than RAMFS.

» lgnoring serialization/deserialization cost
= 7.4% and 3.4% worst than DRAM based linked-list.

*No QEMU changes involved. Measuring the overhead on Persistent Pointer.

18

GW

N
[=]
o

40000
30000

Persistent Pointer Overhead

H DRAM SafeNVM
160
120
10000 I I l
0

DRAM SafeNVM LRANGE_100 LRANGE_300 LRANGE_500 LRANGE_600

00
o

Time (in Second)
S
o

Throughput
(Operations/sec)

o

) Redis LPUSH Operation b) Redis LRANGE Operation

» Redis LPUSH operation: Creating the list of 10 million nodes

» Redis LRANGE operation: Traversing and getting specified number
of nodes (e.g. 100 in LRANGE 100) from the list.

» Performance difference is less than 1%

19 GW

Conclusion

» Data Safety is an important problem for NVM

» SafeNVM provides required data reliability
= equivalent of disk-based system

20

