
SafeNVM: A Non-volatile Memory 
Store with Thread-Level Page 

Protection
Pradeep Kumar, H Howie Huang

The George Washington University



New Members in the Persistent Media

 NVMs well suited for big data

 Can ingest high volume of data at very high velocity

 Others (HPC burst buffer, POSIX file system) likely to benefit
2* Keeton, K. “Memory Driven Computing”. FAST’17 Keynote.   



Non Volatile Memory (NVM)
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 A load-store device like DRAM
 Envisioned to be used as storage media
 Lower energy requirement than DRAM
 Standardizing initiatives:  Zen-Z

 Persistent

 Byte addressable

 Comparable to DRAM latency

 Denser than DRAM

*Haris Volos, et al. "Aerie: Flexible File-System Interfaces to Storage-Class Memory," 
Proc. EuroSys 2014 



Persistent Data at Risk
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int foo(char** argv) {
char buf[8]; //Buffer
char *p = malloc(sizeof(int));   
strcpy(buf,argv[1]);
*p = magic_num;
return 0; 

}

1

2

3

Memory 
Controller

DRAM NVM

 Same address space

Memory corruption are common

 Persistent data in NVM at risk



Related Work
Proposal Name Description Issues
Linux mprotect NVM pages change from read-only 

to read-write
High overhead due to TLB-Shootdown

PMFS[Eurosys’14] NVM pages change from read-only 
to read-write momentarily using 
CR0.WP

1.Interrupt and context switching are disabled
2.Kernel-mapped only

PMBD[MSST’14] NVM pages mapped privately 
during each read-write

1.Interrupt and context switching are disabled
2.Kernel-mapped only
3.Write-window for many threads

Mnemosyne[ASPLOS’11] User space data store Data safety is not covered

NV-Heaps[ASPLOS’11] User space data store Only a subset are coverted

Write Integrity Testing
[IEEE S&P’08]

Allowing pointer modification to 
points-to-set

1. Memory/CPU overhead
2. No Safety against escaped dangling pointer

SafeNVM
(Proposed)

A Thread momentarily gets write-
permission to needed NVM pages

None
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Outline 
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Disk Based Systems and Data Safety

Block Interfaces Vs load-store interface
 Logical block address (LBA) for block devices
 Virtual address space for memory devices
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File system inode as bounds checker
 File offset to LBA conversion = bounds 

checking



Persistent Pointers and Deswizzling
 Virtual pointers are tied to application’s address 

space

 Sharing or loading at new address is tough

 A mapping is required to use persistent pointers

 Swizzling
Virtual address to Persistent pointer

Deswizzling
Persistent pointer to Virtual address

Deswizzling implies a bound checker
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SafeNVM Architecture
Data Reliability Model

 Thread Level Page Protection

Application Specific Object 
Store Design
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Data Safety Model of SafeNVM
 Equivalent to block devices

 Specialized interfaces
 Block interface in block devices
 Special instruction in SafeNVM

 Bound Checking
 File System inode for block devices
 Deswizzling of persistent pointers in SafeNVM
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Thread Level Page Protection
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NX Protection Key … PPN … U/S R/W P

Read-only 0

Read-write 1

…
.

Read-only 2k – 1

63 62           63 - k      48      12 2 1 0

Page Table Entry

k

Permission-Level Buffer(PLB)

PL R/W Access
Rights

R R read-only

W R Read-write

Instruction
Name

PL 
bit Action Comment

set_write_access (Protection Key) 0=>1
Executing thread 
only gets NVM 
write-access 

Permission stays 
during context 
switch

clear_write_access (Protection Key) 1=>0
Executing thread 
releases NVM 
Write-access

Read-access
remains with all 
the threads

• New Page-table and Permission-level Buffer
• TLB is changed similarly
• 6 bit Protection key => 64 protection domains
• New Hardware instruction for page access change

Page-access right calculationProposed X86_64 Instruction

1< k <1 4



Application Specific Object Store
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my_list value1*

my_hash value2*

my_tree value3*

Header*

Extent_addrs*

Header: Root Node*
Free Node*
No. of Extents
Extent Size

Root Node: Data
Next*

…

Free Node: Size
Next*

vExtent_addrs[0]

vExtent_addrs[1]

Extent 0

Extent 1

Kernel Per-object 
metadata

Object_name

Header*

vExtent_addrs*

Extent_addrs[0]

Extent_addrs[1]

Kernel address space
User address space

All pointers inside extent are persistent pointers 

Super Table

Userspace Per-object 
metadata

Key      Value



APIs of SafeNVM
 Provides memory management

 Easy to change an application to use NVM.
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Library API
status    create_object (incore_pobj*, objname, flag)
status    delete_object (incore_pobj*, objname )
status    load_object (incore_pobj*, objname, flag)
void*     decode_ptr (incore_pobj*, splptr t )
splptr t  encode_ptr (incore_pobj*, void*, extent index)
splptr t  alloc (incore_obj*, size, void**)
void       free (incore_pobj*, splptr t)

System Call
status   sys_create_object (incore pobj*, objname, flag)
status   sys_delete_object (incore pobj*, objname, flag)
status   sys_load_object (incore pobj*, objname, flag)
status   sys_alloc_extent (incore pobj*, objname)
status   sys_free_extent (incore pobj*, objname)



Outline 
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Evaluations
Hardware changes in QEMU

1 bit protection key in Page Table, TLB
1 unused bit of EFLAGS as protection level buffer, part of context switch
2 new hardware instruction

 Linux Kernel changes
mmap system call to pass protection key
Page table changes 
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Evaluations

 131,072 nodes of size 128 bytes

 3.6% better then RAMFS for creation

 24.5% performance degradation for traversal discarding deserialization cost
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Persistent Pointer Overhead

 48% and 73% better than RAMFS.

 Ignoring serialization/deserialization cost
7.4% and 3.4% worst than DRAM based linked-list.
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Persistent Pointer Overhead

 Redis LPUSH operation: Creating the list of 10 million nodes

 Redis LRANGE operation: Traversing and getting specified number 
of nodes (e.g. 100 in LRANGE 100) from the list.

 Performance difference is less than 1%
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Conclusion
Data Safety is an important problem for NVM

 SafeNVM provides required data reliability 
equivalent of disk-based system
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