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New Members in the Persistent Media

 NVMs well suited for big data

 Can ingest high volume of data at very high velocity

 Others (HPC burst buffer, POSIX file system) likely to benefit
2* Keeton, K. “Memory Driven Computing”. FAST’17 Keynote.   



Non Volatile Memory (NVM)
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 A load-store device like DRAM
 Envisioned to be used as storage media
 Lower energy requirement than DRAM
 Standardizing initiatives:  Zen-Z

 Persistent

 Byte addressable

 Comparable to DRAM latency

 Denser than DRAM

*Haris Volos, et al. "Aerie: Flexible File-System Interfaces to Storage-Class Memory," 
Proc. EuroSys 2014 



Persistent Data at Risk
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int foo(char** argv) {
char buf[8]; //Buffer
char *p = malloc(sizeof(int));   
strcpy(buf,argv[1]);
*p = magic_num;
return 0; 

}
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Memory 
Controller

DRAM NVM

 Same address space

Memory corruption are common

 Persistent data in NVM at risk



Related Work
Proposal Name Description Issues
Linux mprotect NVM pages change from read-only 

to read-write
High overhead due to TLB-Shootdown

PMFS[Eurosys’14] NVM pages change from read-only 
to read-write momentarily using 
CR0.WP

1.Interrupt and context switching are disabled
2.Kernel-mapped only

PMBD[MSST’14] NVM pages mapped privately 
during each read-write

1.Interrupt and context switching are disabled
2.Kernel-mapped only
3.Write-window for many threads

Mnemosyne[ASPLOS’11] User space data store Data safety is not covered

NV-Heaps[ASPLOS’11] User space data store Only a subset are coverted

Write Integrity Testing
[IEEE S&P’08]

Allowing pointer modification to 
points-to-set

1. Memory/CPU overhead
2. No Safety against escaped dangling pointer

SafeNVM
(Proposed)

A Thread momentarily gets write-
permission to needed NVM pages

None
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Outline 
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01 – Overview and Problem Statement

02 – Background

03 – SafeNVM Architecture

04 – Evaluation



Disk Based Systems and Data Safety

Block Interfaces Vs load-store interface
 Logical block address (LBA) for block devices
 Virtual address space for memory devices
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File system inode as bounds checker
 File offset to LBA conversion = bounds 

checking



Persistent Pointers and Deswizzling
 Virtual pointers are tied to application’s address 

space

 Sharing or loading at new address is tough

 A mapping is required to use persistent pointers

 Swizzling
Virtual address to Persistent pointer

Deswizzling
Persistent pointer to Virtual address

Deswizzling implies a bound checker
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SafeNVM Architecture
Data Reliability Model

 Thread Level Page Protection

Application Specific Object 
Store Design
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Data Safety Model of SafeNVM
 Equivalent to block devices

 Specialized interfaces
 Block interface in block devices
 Special instruction in SafeNVM

 Bound Checking
 File System inode for block devices
 Deswizzling of persistent pointers in SafeNVM
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Thread Level Page Protection
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NX Protection Key … PPN … U/S R/W P

Read-only 0

Read-write 1

…
.

Read-only 2k – 1

63 62           63 - k      48      12 2 1 0

Page Table Entry

k

Permission-Level Buffer(PLB)

PL R/W Access
Rights

R R read-only

W R Read-write

Instruction
Name

PL 
bit Action Comment

set_write_access (Protection Key) 0=>1
Executing thread 
only gets NVM 
write-access 

Permission stays 
during context 
switch

clear_write_access (Protection Key) 1=>0
Executing thread 
releases NVM 
Write-access

Read-access
remains with all 
the threads

• New Page-table and Permission-level Buffer
• TLB is changed similarly
• 6 bit Protection key => 64 protection domains
• New Hardware instruction for page access change

Page-access right calculationProposed X86_64 Instruction

1< k <1 4



Application Specific Object Store
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my_list value1*

my_hash value2*

my_tree value3*

Header*

Extent_addrs*

Header: Root Node*
Free Node*
No. of Extents
Extent Size

Root Node: Data
Next*

…

Free Node: Size
Next*

vExtent_addrs[0]

vExtent_addrs[1]

Extent 0

Extent 1

Kernel Per-object 
metadata

Object_name

Header*

vExtent_addrs*

Extent_addrs[0]

Extent_addrs[1]

Kernel address space
User address space

All pointers inside extent are persistent pointers 

Super Table

Userspace Per-object 
metadata

Key      Value



APIs of SafeNVM
 Provides memory management

 Easy to change an application to use NVM.
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Library API
status    create_object (incore_pobj*, objname, flag)
status    delete_object (incore_pobj*, objname )
status    load_object (incore_pobj*, objname, flag)
void*     decode_ptr (incore_pobj*, splptr t )
splptr t  encode_ptr (incore_pobj*, void*, extent index)
splptr t  alloc (incore_obj*, size, void**)
void       free (incore_pobj*, splptr t)

System Call
status   sys_create_object (incore pobj*, objname, flag)
status   sys_delete_object (incore pobj*, objname, flag)
status   sys_load_object (incore pobj*, objname, flag)
status   sys_alloc_extent (incore pobj*, objname)
status   sys_free_extent (incore pobj*, objname)



Outline 
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Evaluations
Hardware changes in QEMU

1 bit protection key in Page Table, TLB
1 unused bit of EFLAGS as protection level buffer, part of context switch
2 new hardware instruction

 Linux Kernel changes
mmap system call to pass protection key
Page table changes 
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Evaluations

 131,072 nodes of size 128 bytes

 3.6% better then RAMFS for creation

 24.5% performance degradation for traversal discarding deserialization cost
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Persistent Pointer Overhead

 48% and 73% better than RAMFS.

 Ignoring serialization/deserialization cost
7.4% and 3.4% worst than DRAM based linked-list.
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Persistent Pointer Overhead

 Redis LPUSH operation: Creating the list of 10 million nodes

 Redis LRANGE operation: Traversing and getting specified number 
of nodes (e.g. 100 in LRANGE 100) from the list.

 Performance difference is less than 1%
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Conclusion
Data Safety is an important problem for NVM

 SafeNVM provides required data reliability 
equivalent of disk-based system
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