
SafeNVM: A Non-volatile Memory
Store with Thread-Level Page

Protection
Pradeep Kumar, H Howie Huang

The George Washington University

New Members in the Persistent Media

 NVMs well suited for big data

 Can ingest high volume of data at very high velocity

 Others (HPC burst buffer, POSIX file system) likely to benefit
2* Keeton, K. “Memory Driven Computing”. FAST’17 Keynote.

Non Volatile Memory (NVM)

3

 A load-store device like DRAM
 Envisioned to be used as storage media
 Lower energy requirement than DRAM
 Standardizing initiatives: Zen-Z

 Persistent

 Byte addressable

 Comparable to DRAM latency

 Denser than DRAM

*Haris Volos, et al. "Aerie: Flexible File-System Interfaces to Storage-Class Memory,"
Proc. EuroSys 2014

Persistent Data at Risk

4

buf

p

Heap
(DRAM)

Stack
(DRAM)

Heap
(NVM)

1

3

2

int foo(char** argv) {
char buf[8]; //Buffer
char *p = malloc(sizeof(int));
strcpy(buf,argv[1]);
*p = magic_num;
return 0;

}

1

2

3

Memory
Controller

DRAM NVM

 Same address space

Memory corruption are common

 Persistent data in NVM at risk

Related Work
Proposal Name Description Issues
Linux mprotect NVM pages change from read-only

to read-write
High overhead due to TLB-Shootdown

PMFS[Eurosys’14] NVM pages change from read-only
to read-write momentarily using
CR0.WP

1.Interrupt and context switching are disabled
2.Kernel-mapped only

PMBD[MSST’14] NVM pages mapped privately
during each read-write

1.Interrupt and context switching are disabled
2.Kernel-mapped only
3.Write-window for many threads

Mnemosyne[ASPLOS’11] User space data store Data safety is not covered

NV-Heaps[ASPLOS’11] User space data store Only a subset are coverted

Write Integrity Testing
[IEEE S&P’08]

Allowing pointer modification to
points-to-set

1. Memory/CPU overhead
2. No Safety against escaped dangling pointer

SafeNVM
(Proposed)

A Thread momentarily gets write-
permission to needed NVM pages

None

5

Outline

6

01 – Overview and Problem Statement

02 – Background

03 – SafeNVM Architecture

04 – Evaluation

Disk Based Systems and Data Safety

Block Interfaces Vs load-store interface
 Logical block address (LBA) for block devices
 Virtual address space for memory devices

7

File system inode as bounds checker
 File offset to LBA conversion = bounds

checking

Persistent Pointers and Deswizzling
 Virtual pointers are tied to application’s address

space

 Sharing or loading at new address is tough

 A mapping is required to use persistent pointers

 Swizzling
Virtual address to Persistent pointer

Deswizzling
Persistent pointer to Virtual address

Deswizzling implies a bound checker

8

Extent
index

Absolute address
in the extent

0N-163

Persistent Pointer Layout

Outline

9

01 – Overview and Problem Statement

02 – Background

03 – SafeNVM Architecture

04 – Evaluation

SafeNVM Architecture
Data Reliability Model

 Thread Level Page Protection

Application Specific Object
Store Design

10

Thread-specific
& Dynamic
Page-Access
Permission

NVM Lib

OS VMM

mmap
Call

User Space
Kernel Space

NVM

Application

DRAM

Load Store
interface
(unsafe)

Load Store interface
(safe)

Data Safety Model of SafeNVM
 Equivalent to block devices

 Specialized interfaces
 Block interface in block devices
 Special instruction in SafeNVM

 Bound Checking
 File System inode for block devices
 Deswizzling of persistent pointers in SafeNVM

11

DRAM NVM

Write Stray
Write

Stray
Write

Stray
Write

Write

Thread-specific & Dynamic Page-
access Permission

Deswizzling/Bound
Checking

Application

Volatile Data Persistent Data

Write

Thread Level Page Protection

12

NX Protection Key … PPN … U/S R/W P

Read-only 0

Read-write 1

…
.

Read-only 2k – 1

63 62 63 - k 48 12 2 1 0

Page Table Entry

k

Permission-Level Buffer(PLB)

PL R/W Access
Rights

R R read-only

W R Read-write

Instruction
Name

PL
bit Action Comment

set_write_access (Protection Key) 0=>1
Executing thread
only gets NVM
write-access

Permission stays
during context
switch

clear_write_access (Protection Key) 1=>0
Executing thread
releases NVM
Write-access

Read-access
remains with all
the threads

• New Page-table and Permission-level Buffer
• TLB is changed similarly
• 6 bit Protection key => 64 protection domains
• New Hardware instruction for page access change

Page-access right calculationProposed X86_64 Instruction

1< k <1 4

Application Specific Object Store

13

my_list value1*

my_hash value2*

my_tree value3*

Header*

Extent_addrs*

Header: Root Node*
Free Node*
No. of Extents
Extent Size

Root Node: Data
Next*

…

Free Node: Size
Next*

vExtent_addrs[0]

vExtent_addrs[1]

Extent 0

Extent 1

Kernel Per-object
metadata

Object_name

Header*

vExtent_addrs*

Extent_addrs[0]

Extent_addrs[1]

Kernel address space
User address space

All pointers inside extent are persistent pointers

Super Table

Userspace Per-object
metadata

Key Value

APIs of SafeNVM
 Provides memory management

 Easy to change an application to use NVM.

14

Library API
status create_object (incore_pobj*, objname, flag)
status delete_object (incore_pobj*, objname)
status load_object (incore_pobj*, objname, flag)
void* decode_ptr (incore_pobj*, splptr t)
splptr t encode_ptr (incore_pobj*, void*, extent index)
splptr t alloc (incore_obj*, size, void**)
void free (incore_pobj*, splptr t)

System Call
status sys_create_object (incore pobj*, objname, flag)
status sys_delete_object (incore pobj*, objname, flag)
status sys_load_object (incore pobj*, objname, flag)
status sys_alloc_extent (incore pobj*, objname)
status sys_free_extent (incore pobj*, objname)

Outline

15

01 – Overview and Problem Statement

02 – Background

03 – SafeNVM Architecture

04 – Evaluation

Evaluations
Hardware changes in QEMU

1 bit protection key in Page Table, TLB
1 unused bit of EFLAGS as protection level buffer, part of context switch
2 new hardware instruction

 Linux Kernel changes
mmap system call to pass protection key
Page table changes

16

Evaluations

 131,072 nodes of size 128 bytes

 3.6% better then RAMFS for creation

 24.5% performance degradation for traversal discarding deserialization cost

17

0
0.2
0.4
0.6
0.8

1
1.2
1.4

Ru
n

Ti
m

e
(N

or
m

al
iz

ed
)

Creation Traversal
Linked-list operations

Case Number Issues Effect on
NVM

CVE-2010-2160 Buffer
Overflow

Data
Corruption

CVE-2007-1211 Dangling
Pointer

Data
Corruption

CVE-2007-4000 Uninitialized
Pointer

Data
Corruption

CVE-2008-5187 Pointer
Arithmetic

Data
Corruption

Persistent Pointer Overhead

 48% and 73% better than RAMFS.

 Ignoring serialization/deserialization cost
7.4% and 3.4% worst than DRAM based linked-list.

18

RAMFS SafeNVM
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ti
m

e
(In

 S
ec

on
d)

(a) Linked-list Creation

Serialization Creation

RAMFS SafeNVM
0

0.1
0.2
0.3
0.4
0.5
0.6

Ti
m

e
(In

 S
ec

on
d)

(b) Linked-list Traversal

Deserialization Traversing

*No QEMU changes involved. Measuring the overhead on Persistent Pointer.

Persistent Pointer Overhead

 Redis LPUSH operation: Creating the list of 10 million nodes

 Redis LRANGE operation: Traversing and getting specified number
of nodes (e.g. 100 in LRANGE 100) from the list.

 Performance difference is less than 1%

19

0

40

80

120

160

200

DRAM SafeNVM

Ti
m

e
(in

 S
ec

on
d)

(a) Redis LPUSH Operation

0

10000

20000

30000

40000

LRANGE_100 LRANGE_300 LRANGE_500 LRANGE_600

Th
ro

ug
hp

ut
(O

pe
ra

tio
ns

/s
ec

)

(b) Redis LRANGE Operation

DRAM SafeNVM

Conclusion
Data Safety is an important problem for NVM

 SafeNVM provides required data reliability
equivalent of disk-based system

20

