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Abstract—For many big data applications, non-volatile mem-
ory (NVM) can be utilized to store and process the data at
faster rate due to its high-performance, scalable technology,
DRAM-like interface and low energy requirement. NVMs
such as phase change memory and memristor allow the
applications to store persistent data directly in memory, and
avoid data serialization and deserialization. However, NVM,
like volatile memory, is susceptible to data corruption from
software bugs. In this work, we present a paradigm shift
from current process-based page-protection to a thread-based
solution specifically designed for NVM. We have developed
SafeNVM, a reliable NVM store to support application-specific
data formats. SafeNVM will enable the NVM to provide strong
data protection while delivering high performance access. We
propose a simple hardware change in TLB and page table entry
and exploit bound checking inherent to swizzled pointers. We
show that SafeNVM is reliable against a collection of stray
writes and the cost to achieve such protection is small.
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I. INTRODUCTION

Big data is characterized by five Vs: volume, velocity,

variety, veracity and value. To deal with the velocity, which

is defined as faster arrival rate of big data, non-volatile

random access memory (NVM) is well positioned due to

its excellent scalability and DRAM like performance [1]–

[4]. Prior works in big data [5] [6], HPC [7]–[9], and

big data on HPC systems [10], [11] have identified NVM

as an important hardware component, and envision that

NVM will become a natural solution for achieving the

performance required in such systems due to its memory like

performance and lower energy requirement. Hence, big data

technologies such as file-system [10], key-value store [12],

graph processing [13], [14] and HPC technologies such as

burst buffers [8] will get benefited from the NVM.

Examples of such memory technologies are Phase-Change

Memory (PCM), STT-RAM [15], Memristor [16] etc. They

can be integrated with the existing DRAM memory con-

trollers [3] [4] [2] and thus can be addressed as load-store

devices as the current DRAM memory. Hence, NVM can

be used as RAM disk to make a drop-in replacement of

disks [17] or as a kernel-mapped non-volatile memory to

store the serialized data at kernel address space utilizing

read/write system call interfaces in the existing file sys-

tems [18] [19] [20]. On the other hand, NVM can also

be utilized to store persistent data in application-specific

format directly at user address space [21] [22] to achieve
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Figure 1: Motivation example on how NVM data could get cor-
rupted due to buffer overflow in NVM store

better application performance. It provides better energy

efficiency [23] than the kernel-mapped NVM. We refer them

as non-volatile memory store (NVM store) in this paper.

Unfortunately, two NVM features, random access and

byte addressability, introduce the risk of NVM corruption

from a spectrum of application or device driver bugs such

as buffer-overflow, dangling, uninitialized or manufactured

pointer, etc. Such bugs are very common in the applica-

tions as well as device drivers and can potentially corrupt

any memory location [24], [25]. For example, 17% of

the application vulnerabilities in 2016 were due to buffer

overflow errors alone according to United States Computer

Emergency Readiness Team [26].

For NVM store, such bugs pose serious data reliabil-

ity challenges when a stray write to NVM could corrupt

persistent data, leading to loss of valuable data. Figure

1 illustrates that a volatile memory buffer buf depending

upon the variable length argument argv[1] can corrupt the

adjacent pointer p to make it point to NVM upon buffer

overflow error. This pointer can corrupt the NVM data

during the write.

Note that this example is very similar to prior works on

cyber attacks due to memory corruption issues [27]. In such

works, cyber attack is observed when pointer p is a control

flow pointers such as function pointers, return address etc.

In our case, pointer p is a data pointer which can point

to an NVM address after the buffer-overflow or any other

corruption. We re-visit all the existing mechanisms from

NVM persistent data reliability perspective in Section II,

however, we present a high-level summary in Table I.

Traditionally, memory corruption affects the volatile data

in memory while the persistent data is safe in disk storage.

Isolated from memory address space, disk-based storage
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Table I: Comparison of different Proposals

Proposal Name Description Issues

Linux/mprotect NVM pages change High overhead due

from read-only to TLB-Shootdown

to read-write

PMFS [19] NVM pages change 1.Interrupt and context-

from read-only to switching are disabled

read-write moment- 2.Kernel-mapped only

arily using CR0.WP

PMBD [17] NVM pages mapped 1.Interrupt and context-

privately during switching are disabled

each read-write 2.Kernel-mapped only

3.Write-window for many

threads

Mnemosyne [21] None Reliability not covered

NV-heaps [22] None Only a subset are covered

WIT [28] Allowing pointers to 1.Memory/CPU overhead

points-to-set 2.No Safety against escaped

dangling pointer.

SafeNVM A thread momentarily None

(Proposed) gets write-permission

to needed NVM pages

interacts with the OS and applications through block-based

interfaces only. Hence, disk storage is less susceptible to

application or device-driver memory corruption bugs. How-

ever, as NVM is addressed in the same way as DRAM, the

isolation between the volatile temporary data and persistent

data can no longer be ensured. The existing page-protection

mechanisms do not provide the right granularity to safely

write the data to NVM, e.g., the linux/mprotect technique

only provides process-level page protection where all the

threads of the process has the same page-permission, and

causes severe application performance degradation due to

TLB-shootdown [17].

Memory safety techniques like softbound [29], Mem-

safe [30], CETS [31], WIT [28] etc perform run-time check

which introduce high overhead, hence they are deployed

only in situations where safety is a primary concern [30].

However, unlike these works which concentrate on each

memory pointers’ bounds or points-to set, PMFS [19] and

PMBD [17] propose time-window for data-access which

effectively restricts the executing threads of all kernel-

modules. Unfortunately, they need to disable interrupts and

context-switching which affect the working of the system as

applications and devices depend on such mechanisms.

Contribution: SafeNVM improves this time-window con-

cept, i.e. allowing only the legitimate thread to write on

a group of NVM pages within the interval. To this end,

we separate the NVM and volatile memory, and propose a

new thread-level page-protection for NVM that by default

restricts the write on NVM by all the threads. Write access

is gained using new hardware instructions. We then propose

an application-specific persistent object store that takes ad-

vantage of inherent bound checking present in mandatory

deswizzling of swizzled persistent pointer during NVM

write, thus avoids additional overheads. Figure 2 presents

an overview of SafeNVM architecture.
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Figure 2: Data safety overview in SafeNVM. Modification in
volatile data can not corrupt the persistent data due to thread-level
page protection. In-built bound checker present in deswizzling pro-
cess of persistent pointer saves a persistent object to be corrupted
by another persistent object modification.

In SafeNVM, application do not need to check the bound

of volatile pointers as hardware protection guarantees that

the memory corruption bugs would never be propagated to

NVM. While, the bound checker during swizzling protects

one persistent object from other persistent object modifi-

cation. We argue in Section III-A that the data proection

provided by SafeNVM is equivalent to disk based data

protection. We believe this approach is well-suited for multi-

threaded applications running in a multi-core processors.

A kernel version of SafeNVM uses the proposed hardware

changes along with NVM specific file system to provide an

equivalent reliability that is easier to deploy as it does not

involve application change. Note that the focus of this work

is to protect persistent data stored in the NVM, rather than

volatile data stored in DRAM or NVM. Consistency across

threads and failures are not the focus of this work.

The rest of the paper is organized as follows: Section II

presents motivation and related work. Section III presents

the reliability model of SafeNVM and its architecture in-

cluding hardware and software proposals. The evaluation is

presented in Section IV, and the conclusion in Section V.

II. RELATED WORK AND MOTIVATION

We discuss two types of related work here. Memory

safety related works concentrate on the memory corruption,

which motivates the need of hardware changes that we

propose. While persistent object related works concentrate

on avoiding the serialization/deserialization work between

memory and disks, and inspire the software proposal that

take advantage of swizzling/deswizzling technique as pre-

sented in these works.

A. Memory-safety

Type-safe languages like Java eliminate memory errors,

but their run-time environment are written in type un-
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safe language like c/c++, hence they can not be assumed

memory corruption safe. Memory safety techniques like

Memsafe [30], softbound [29] and CETS [31] does run-

time check for every pointers. There have been propos-

als on control-flow integrity like CFI [32], code-pointer

integrity [33], write-integrity testing [28], data-flow in-

tegrity [34]. WIT presents little less overhead compared

to others, but it also has memory overhead apart from the

performance overhead. The overhead is mainly because of

runtime bounds check on pointer dereference to write only

objects in its own approximate points-to set. Though, it is

minimized using static analysis. However, WIT does not

deal with temporal errors, the memory corruption could be

possible through escaped dangling pointer [35].

Also, all of these technique do not distinguish between

application’s volatile and persistent data, and hence the

technique, say WIT, would be applied on whole of the

memory set instead of just NVM space. There is no way to

restrict the technique for the safety of persistent data only.

Also, with high capacity NVM added for application use,

the number of memory objects would increase substantially,

thus degrading the performance of these proposals.

Mnemosyne [21] and NV-heaps [22] provide high-

performance, application-specific NVM store where reliabil-

ity is not the main objective. Hence they do not address the

issue of NVM data-corruption due to memory corruption

bugs. Mapping the NVM pages as read-only in applica-

tion’s address space, and then selectively using mprotect

system call to enable a small write-window can provide a

reliable write method to store data in NVM, but it causes

severe application performance degradation due to TLB-

shootdown [17].

Alternately, NVM pages can be mapped in the kernel-

space as read-only and writes can be enabled momentarily

by using the CR0.WP bit as in PMFS [19]. However,

CR0.WP flag is not saved during interrupt handling, so

interrupts and context-switching are disabled in PMFS. This

affects the performance of the overall system as context-

switching is an important part of it, and the performance of

devices degrade as they depend on interrupts. PMBD [17]

suggests to use the private page-table mapping of NVM

pages during each read and write call. Similar to PMFS, it

disables the interrupts and context switching, and provides

a write-window for many threads.

However, unlike prior works [28], [32], [34] which con-

centrate on each memory pointers’ bounds or points-to

set, the time-window concept from PMFS and PMBD for

data-access effectively restricts the executing threads of

all kernel-modules (say a device-driver) from write-access

during the read window. Despite their shortcomings, the

idea is well-suited for multi-core systems. Unfortunately it

cannot be implemented for userspace-mapped NVM store

which actually provides better performance and energy

efficiency [23]. SafeNVM takes inspiration from the time-

window concept.

B. Persistent Objects and Swizzling/Deswizzling

Persistent memory stores such as Objectstore [36],

Thor [37], Texas [38], QuickStore [39], Persistent Java [40],

SoftPM [41] allows application specific data-structure to be

stored directly in block devices, hence pointer specific data

structures can directly be stored in the disks. When using

such systems, application works with a persistent pointer
which can be think of as a specific object handler which

behaves like a memory pointer, thus avoiding the need of

serialization and deserialization when data moves to and fro

memory and disks.

Since, objects could be loaded at any virtual memory

address of the application, persistent pointers are created and

stored as swizzled pointers. So, whenever a read or write

is required deswizzling technique is used which converts

the swizzled address to the actual address using few look

ups and pointer arithmetic. Objectstore [36] utilizes page

mapping and tag-table metadata to track all the persistent

pages and objects in the page respectively, and uses these

metadata for deswizzling the pointers present in the page.

Other systems [37]–[41] depend directly on such page

mapping and tag-table structures or provide similar mecha-

nisms. E.g. Texas [38] maintains a page mapping informa-

tion to do the pointer swizzling. However, it also tracks all

the pointer in the pages to reserve virtual pages in advance,

that are pointed to by pointers present in the current page.

Then, it relies on page-fault to load the actual page in the

virtual memory.

Bound Checker in Deswizzling. Designed for disk-based

storage, these solutions always maintain two copies of data:

one in volatile memory and another in the disk during appli-

cation run. For NVM, ideally one should only need to store

one copy of data. Nonetheless, pointer swizzling/deswizzling

is the necessary requirement to store the application-specific

persistent data in NVM, without which data is tied to a fixed

virtual address of one particular application. Hence sharing

becomes a problem such as in [21]. It is the deswizzling

process that resembles close enough to a bound checker, thus

the arithmetic operation in the deswizzling is also used as

bound checker in SafeNVM.

III. SAFENVM

SafeNVM is an object based NVM store as shown in

Figure 4. It provides data reliability equivalent to disk-based

system to support application-specific data-store in NVM

such as databases, persistent key-value stores etc. It has

two parts, a hardware proposal related to page-table and

TLB structures that provides thread-level page protection.

And, the persistent object store which involve design of

persistent pointer, swizzling/deswizzling and bound checker,

and memory management. At the end, we discuss kernel

variant of SafeNVM which provides equivalent reliability

67



NX Protection Key … PPN … U/S R/W P

Read-only 0

Read-write 1

…
.

Read-only 2k – 1

63 62           63 - k      48    12 2 1 0

Page Table Entry

k

Permission-Level Buffer(PLB)

PL R/
W

Access
Rights

R R read-only

W R Read-write

Instruction
Name

PL 
bit Action Comment

set_write_access(
Protection Key)

0=>1
Executing thread 
only gets NVM 
write-access 

Permission stays 
during context 
switch

clear_write_access(
Protection Key)

1=>0
Executing thread 
releases NVM 
Write-access

Read-access
remains with all 
the threads

a) New Page-table and Permission-level Buffer c) Page-access right calculationb) Proposed X86_64 Instruction

1< k <1 4

Figure 3: Page table (and TLB) modification and permission level Buffer (PLB) proposal. Executing thread has to only change the
PLB values using new hardware instruction to gain write permission on read-only pages. Changing PLB values does not necessitate any
TLB-shootdown.

and is a stand-in replacement of current file-system based

interfaces.

A. Reliability Model

We observe that with the advent of NVM store, the

applications’ address space or kernel space contain two types

of data: volatile data in the DRAM and persistent data in the

NVM. We compare the data safety of NVM store with disk-

based storage system which is de-facto standard of persistent

data-reliability, and list two major reliability differences:

First, isolated from memory address space, disk-based

storage interacts with the OS and applications through block-

based interfaces. Thus memory corruption bug can only

corrupt the application’s volatile data, not the persistent data

in the disk. However, as NVM is addressed in the same

way as DRAM, the isolation between the volatile temporary

data and persistent data can no longer be ensured in the

NVM store. The write to both data are through the CPU’s

load/store interfaces. Thus the same bug can corrupt the

volatile as well as persistent data in an NVM store.

Second, File-system inode structure provides the required

bound-checking to persistent data write to save one file

modification from a stray-write in another file modification.

E.g. in the write() system call, if user provides an out-of-

bound offset, the inode data-structure find out the invalid

offset, and protects the file. This bound-checking ensures

that the persistent data modification remain isolated with

other file modification. The same file-system inode technique

could be employed to save a persistent NVM file data

from another persistent file data modification bug in case

of kernel-mapped NVM store. However userspace-maaped

NVM store doesn’t employ such technique and are prone to

persistent data corruption by another unbounded persistent

write.

SafeNVM Model. SafeNVM forces the update through an

protected interface, thanks to the thread level page protection

technique, which is equivalent to a block interface. Thus

memory load-store interface cannot corrupt this data even in

presence of memory corruption bugs. And, inherent bound

checking present in deswizzling process is equivalent to

bound check performed by file-system inode structure. Thus

the reliability guarantee provided by SafeNVM is equivalent

to a disk based system.

B. Protection Key Bits and Permission-Level Buffer

We present a lightweight page-protection method of NVM

pages applied to each threads individually. We keep the iso-

lation of NVM modification from volatile data modification

so that threads modifying the volatile data should not be able

to modify the persistent data. At the same time, applications

can read the persistent data from NVM in the same way as

they read it from DRAM.

To achieve this, we divide the NVM to groups of pages

called Protection Group and map them as read-only which

maximizes the protection against any memory corruption

caused by threads modifying volatile data. For legitimate

modification of the persistent data, only the modifying thread

will gain the permission to do so using a new set of instruc-

tions within one protection group. This information should

persist even after a context switch. Once the modification is

completed, the permission of the modifying thread falls back

to read-only. The access permission for volatile memory

pages remains the same.

We propose a simple hardware change to achieve NVM

page-protection model discussed above for SafeNVM.

Specifically, we add protection-key (PK) bits in the page-

table entry as shown Figure 3(a). If different NVM pages use

the same key, they will be part of the same protection group.

The corresponding TLB structure will also be modified to

accommodate the PK bits. We then need to add one bit called

permission-level (PL) corresponding to each PK entry in a

new structure permission-level buffer (PLB). For example,

if we use 6 bits for PK bits then the PLB size is 64 bits.

We propose two instructions to set and clear the PL bits

to get and release write-permission respectively for group

of pages having same PK bits (Figure 3(b)). The page

permission will be calculated based on the user/supervisor

(U/S) bit, the read/write (R/W) bit of the page table entry

and the PL bit. The PL bit will be selected based on key

stored in the PK bits. When the PK bits are clear, the PL bit

is ignored and the existing technique is used to determine the

page access rights. But when PK bits store some protection

keys, PL bit is used for access rights calculation as shown in
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Figure 4: Userspace-mapped SafeNVM. Gray boxes show proposed
changes.

Figure 3(c). Specifically, the thread can modify some read-

only memory pages whose corresponding PL value is set.

PLB structure is part of the thread context-switch, so it

needs to be saved during context switch, thus the thread

gets the same write-permission when it resumes its work.

Also, the modification of the PL bit of PLB does not

necessitate a TLB-shootdown, while PK bits are set during

page table entry creation of a virtual NVM page. Thus

altering the permission of pages for a selected thread is

very fast operation and we achieve a low-cost and high

performing page protection mechanism.

Our design is similar to the protection-key mechanism in

IA-64 processor architecture [42] that allows page permis-

sion to be altered by changing the protection-key register

values. The key difference is that IA-64 allows only process-

level page-permission change while our method allows

thread-level page permission-modification.

Discussion. We believe that it is possible for the hardware

vendors to incorporate the hardware changes in the future

generation of multi-core processors. Intel recently incorpo-

rated memory protection extensions (MPX) in its processor

and is committed to enhance the safety and security of

the system [43]. Oracle has announced the silicon secured

memory in SPARC M7 processor [44] that performs real-

time check for each access. Vendors have modified the TLB

and page-table structure in recent past such as process-

context identifiers (PCID) or netsted page-tables to support

virtualization. When the high capacity NVM will be used to

store the persistent data, the reliability will become the main

challenge. The vendors will be looking for new technique

to provide reliability at lower performance overhead, and it

will become the key distinguishing factor in the deployment.

Our proposal would be another step in the right direction in

this regard, and the proposed changes are also backward

compatible.

C. Userspace-mapped SafeNVM

The hardware changes alone do not provide the equivalent

data-reliability in SafeNVM that disk-based storage systems

provide. Mapping the entire non-volatile memory to the

application address-space may not be the wise thing to do

my_list value1*

my_hash value2*

my_tree value3*

Header*

Extent_addrs*

Header: Root Node*
Free Node*
No. of Extents
Extent Size

Root Node: Data
Next*

…

Free Node: Size
Next*

vExtent_addrs[0]

vExtent_addrs[1]

Extent 0

Extent 1

Kernel Per-object metadata

Object_name

Header*

vExtent_addrs*

Extent_addrs[0]

Extent_addrs[1]

Kernel address space
User address space

*Persistent Pointer:  All 
pointers inside extent

Extent
index

Absolute address
in the extent

0N-163

Super Table

Userspace Per-object metadata

Key      Value

Figure 5: Persistent pointer (top left corner) and Object-layout in
NVM as per userspace-mapped SafeNVM. Super Table is pointed
by a fixed location in NVM (much like a super block in file
system context) while per-object metadata is similar to a file inode
structure.

because all the modules of the application get the access

to the whole NVM address space. In case of any memory

corruption bug in an application module, the corresponding

thread that gains the write permission can corrupt other data-

structures that belong to the same protection group.

To solve the issue, we utilize the inherent bound checking

present in the pointer swizzling/deswizzling technique which

is part of any object store. Figure 4 shows the high-level

design of SafeNVM. It has two major components: the

Kernel part and a userspace library (NVM Lib). Figure 5

shows the detailed design of persistent pointers and per-

object metadata.

The kernel part resides inside OS virtual memory manager

(VMM). It manages the NVM as a collection of extents

(multiple of page size) using the NVM descriptor and han-

dles the higher level of memory management such as extents

allocation to the application data structures and mapping the

allocated extents to the user address space. It also maintains

a object table called Super Table where each object is

maintained using a kernel specific per-object metadata. The

super-table and the NVM descriptor are pointed from a fixed

NVM location similar to super-block concept of file-system

(not shown in Figure).

The NVM Lib, through its userspace per-object meta-

data, manages the memory allocation/deallocation within

the extent. It interacts with the kernel using system call

interfaces to create, load, destroy, extend and truncate the

data-structure. It wraps those system call APIs in easy-

to-use library APIs for application developers to hide the

complexity of SafeNVM. Table II presents the proposed

interfaces.

The format of the persistent pointer is shown in Figure 5.

The N least significant bits of the pointer are stored as the

address inside any extent with relative to the start of that

extent, while the rest of most significant bits are reserved

for index pointing to vExtent addrs arrary. The value N is
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Table II: API list of userpsace-mapped SafeNVM

Library API
status create object(incore pobj*, objname, flag)
status delete object(incore pobj*, objname )
status load object(incore pobj*, objname, flag)
void* deswizzle ptr(incore pobj*, splptr t )
splptr t swizzle ptr(incore pobj*, void*, extent index)
splptr t alloc(incore pobj*, size, void**)
void free(incore pobj*, splptr t)
System Call
status sys create object(incore pobj*, objname, flag)
status sys delete object(incore pobj*, objname, flag)
status sys load object(incore pobj*, objname, flag)
status sys alloc extent(incore pobj*, objname)
status sys free extent(incore pobj*, objname)

stored in Extent Size field of the header structure inside

the per-object metadata. The value of N can be chosen

independently for each object, and hence we can extend

this design to support huge memory pages. For the current

prototype, the extent size has been configured as 4KB only.

The allocated extents and objects are tracked using the

per-object metadata. We maintain two slightly different

copies of per-object metadata. Kernel-specific per-object

metadata (pobj) is stored permanently in the NVM and

contains the base physical address of the allocated extents,

while application-specific userspace per-object metadata (in-

core pobj) contains the base virtual-address of the allocated

extents and is discarded when an application closes.

The advantage of using this per-object metadata is three-

fold. First, the metadata is referred during each read-write

of NVM to get deswizzled pointer, thus bound checking

can be performed during each read-write to NVM free of

cost. Second, we avoid the global page-mapping lookup

each time a persistent pointer is deswizzled, as we have

a local access to the base virtual address of each extent.

Third, SafeNVM does not employ the tag-table and saves

a lot of precious NVM, while page-mapping information

is maintained at extent level, further removing memory

pressure issues associated with page-mapping and tag-table.

D. Kernel-mapped SafeNVM

Kernel-mapped SafeNVM follows the ideas from file-

system design. The file-system is written specifically for

byte-addressable NVM, e.g., bypassing page-cache, sub-

page write etc. The whole NVM is mapped into kernel-

address space and data are stored in a format different

than what an application uses. An example of such data

serialization and deserialization can be seen in a linked list

represented as a collection of data and pointers in memory

that is saved on disk with the help of several metadata such

as offset and index.

Userspace-mapped NVM store needs application changes

to deploy. For quicker deployment, one can use kernel-

mapped NVM store as it does not necessitate any appli-

cation changes and existing file-system system call would
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Figure 6: Kernel-mapped NVM store utilizes the hardware proposal
for data reliability, while depends upon NVM specific file system
design to serve files. Gray boxes show proposed changes.

be utilized.

Figure 6 shows the architecture of the kernel-space

mapped NVM store. In this architecture, an NVM specific

filesystem could be laid-out directly on the top of NVM

[19]. It maps the entire persistent memory in the kernel-

space and lays down a PM specific file-system on top of

this. Application has to use the existing system call APIs to

access the file-services. Alternately, NVM could be modeled

as a block-based device and an existing filesystem could be

laid-out on top of that [17].

We propose to utilize the proposed hardware changes

to achieve the better reliability guarantee on top of the

architecture proposed by [19] [17]. The proposed hardware

changes are enough for the kernel-mapped NVM store

to achieve the equivalent reliability of disk-based storage

system along with either NVM specific or a general file-

system.

IV. EXPERIMENTS

The machine used for the experiments has a dual-socket of

Intel Xeon CPU E5-2620 2.00 GHz with 6 cores each, and

32GB DRAM. We use the Ubuntu 12.10 server edition and

the QEMU X86 64 emulator (version 0.14.1) to simulate all

the hardware changes that we have proposed.

Our prototype has implemented one bit protection-key

(PK) in the Linux kernel (version 2.6.38.8), and is installed

on top of QEMU. We have implemented the proposed new

page table structure to include the new PK bit and changes

in the mmap system call to use this bit. The same changes

are incorporated to the X86 64 TLB structure of QEMU.

The permission-level (PL) bit is added to the EFLAGS

register in the QEMU because the EFLAGS register is part

of thread-context switch. The two newly proposed hardware

instructions are simulated in QEMU.

We use RAMFS as well as DRAM based system to

show the performance comparison with respect to SafeNVM.

While we will show later that the worst performance is

within an acceptable range, the QEMU-based simulation

introduces some unnecessary overhead. We believe that a
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hardware implementation will deliver a significantly better

performance.

Protection Verification. To verify the effectiveness to

catch stray writes, we have implemented a number of pro-

grams, shown in Table III, based on [45]. We have verified

that SafeNVM is able to catch all the erroneous writes.

Table III: Cases of Stray Writes protected by SafeNVM

Case Number Issues Effect on NVM

CVE-2010-2160 Buffer Overflow Data Corruption

CVE-2007-1211 Dangling Pointer Data Corruption

CVE-2007-4000 Uninitialized Pointer Data Corruption

CVE-2008-5187 Pointer Arithmetic Data Corruption

Performance Verification. To measure the performance

of userspace-mapped SafeNVM with respect to a RAMFS

system, we choose to implement a linked-list based bench-

mark. This linked-list is implemented using the library API

listed in Table II of SafeNVM. To compare the performance,

the reference linked-list is implemented in DRAM and saved

in a RAMDisk using RAMFS. Both implementations have

the same memory allocation method so that the performance

can be independent of memory allocation scheme. Each 4KB

page is allocated using the mmap() system call and linked-

list nodes are allocated from this page locally. The linked-list

is a singly linked list of 131,072 nodes and each node has

128 byte data. Figure 7 shows the linked-list creation and

traversal time. SafeNVM performs 3.6% better then RAMFS

based system for linked-list creation, because in RAMFS we

do serialization to RAMDisk.
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Figure 7: Normalized SafeNVM performance over RAMFS. For
traversal, we ignore the deserialization cost for RAMFS and
concentrate purely on traversal.

To measure traversal performance, we ignore the time

taken by the RAMDisk to load the data in DRAM so that

we can measure the overhead of deswizzling technique. The

test shows that there is 24.5% performance degradation for

SafeNVM, which is caused mostly by QEMU emulation. A

real hardware implementation will minimize this overhead as

those operations will be performed in hardware using fewer

clock cycles.

Cost of Swizzling/Deswizzling. We also measured the

swizzling/deswizzling prcoess overhead for a linked-list of

3.6 million nodes and for Redis [46] (a key-value store)

operations. During linked-list creation all the pointers are

swizzled, while during traversing the persistent pointers are

deswizzled to get the actual addresses. Figure 8 shows this

overhead for the linked-list. However, it should be noted

that by using swizzling/deswizzling, we are avoiding the

read and write from RAMFS and the serialization process.

Hence, SafeNVM performs a lot better than the RAMFS

based implementation where creation and traversal performs

48% and 73% better than RAMFS.
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Figure 8: Swizzling/deswizzling technique and bound checker
performance analysis on a linked List

If we ignore the serialization and deserialization of

RAMFS, the resulting operations are purely DRAM opera-

tions. In this setup, creation and traversal performs 7.4% and

3.4% worst than DRAM based linked-list. We also compared

the same operations performance difference for redis linked

list using redis-benchmark provided by redis. Redis LPUSH

operation is for creating the list of 10 million nodes, while

redis LRANGE operation is like traversal, getting specified

number of nodes (e.g. 100 in LRANGE 100) from the list.

In this case, the performance difference is less than 1%, as

shown in Figure 9. This is because redis-benchmark simu-

lates redis key-value store in server mode, while the clients

are running locally, sending those operations to server. Thus

the swizzling/deswizzling overhead hardly affects the overall

stack. Clearly, the software cost is well within an acceptable

range.
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Figure 9: Swizzling/deswizzling technique and bound checker
performance analysis on Redis key-value store (linked-list)

V. CONCLUSION

We presented SafeNVM, a highly reliable userspace-

mapped NVM store to store the persistent data in

application-specific format in the emerging NVMs, and

shown that the cost to achieve the reliability is small. We

also presented a highly reliable kernel-mapped NVM store

as a replacement to block-interface based storage.
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